Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Struct Mol Biol ; 31(3): 523-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238586

RESUMO

Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.


Assuntos
Proteínas de Ligação a DNA , Chaperonas de Histonas , Animais , Humanos , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37188479

RESUMO

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


Assuntos
Reparo do DNA , Osteocondrodisplasias , Humanos , Mutação/genética , Quinase 1 Relacionada a NIMA/genética , Osteocondrodisplasias/genética , Fosforilação
3.
BJGP Open ; 6(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35135815

RESUMO

BACKGROUND: Primary care plays an important role in the conception and delivery of transformational research but GP engagement is lacking, prompting calls for the promotion of academic opportunities in primary care. AIM: To identify potential barriers and facilitators among GP trainees and trainers in primary care research to inform support given by Local Clinical Research Networks (LCRNs). DESIGN & SETTING: A cross-sectional online survey was developed and distributed by the CRN to GP trainees and trainers in the North East and North West. METHOD: The survey covered areas including demographics, career intentions, current and potential engagement with research, as well as their general understanding of research in primary care, which included barriers and facilitators to primary care research. RESULTS: Trainees had low intentionality to pursue research and half of trainees did not engage with any research activity. Despite one in five trainees reporting intentions to include research in their career, only 1% would undertake a solely academic career. Medical school region was the only strongly associated factor with academic career intention. Just under 30% of trainers reported engagement in research, but far fewer (8.6%) were interested in contributing to research, and only 10% felt prepared to mentor in research. CONCLUSION: Among trainees, there is limited engagement in and intentionality to pursue research, and this was crucially reflected by responses from trainers. This study identified the need for LCRNs to assist with training in research mentoring and skills, funding opportunities, and to develop resources to promote research in primary care.

4.
EMBO J ; 40(23): e108271, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605059

RESUMO

Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Elonguina/metabolismo , Neurônios/patologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ativação Transcricional , Elonguina/genética , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/patologia , Humanos , Mutação , Neurônios/metabolismo , Fosfoproteínas/genética , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Espasmos Infantis/patologia
5.
Mol Cell ; 78(6): 1152-1165.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32516598

RESUMO

The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular , DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Genes BRCA1/fisiologia , Humanos , Enzimas Multifuncionais/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
6.
Biochem J ; 477(10): 1893-1905, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32239177

RESUMO

Congenital dyserythropoietic anaemia (CDA) type I is a rare blood disorder characterised by moderate to severe macrocytic anaemia and hepatomegaly, with spongy heterochromatin and inter-nuclear bridges seen in bone marrow erythroblasts. The vast majority of cases of CDA type I are caused by mutations in the CDAN1 gene. The product of CDAN1 is Codanin-1, which interacts the histone chaperone ASF1 in the cytoplasm. Codanin-1 is a negative regulator of chromatin replication, sequestering ASF1 in the cytoplasm, restraining histone deposition and thereby limiting DNA replication. The remainder of CDA-I cases are caused by mutations in the C15ORF41 gene, but very little is known about the product of this gene. Here, we report that C15ORF41 forms a tight, near-stoichiometric complex with Codanin1 in human cells, interacting with the C-terminal region of Codanin-1. We present the characterisation of the C15ORF41-Codanin-1 complex in humans in cells and in vitro, and demonstrate that Codanin-1 appears to sequester C15ORF41 in the cytoplasm as previously shown for ASF1. The findings in this study have major implications for understanding the functions of C15ORF41 and Codanin-1, and the aetiology of CDA-I.


Assuntos
Anemia Diseritropoética Congênita/etiologia , Proteínas de Ciclo Celular/genética , Glicoproteínas , Complexos Multiproteicos , Proteínas Nucleares/genética , Anemia Diseritropoética Congênita/genética , Proteínas de Ciclo Celular/química , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
7.
Am J Med Genet A ; 182(5): 1217-1222, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034940

RESUMO

Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene cause the neurodevelopmental disorder, the CDKL5 deficiency disorder. Reports of individuals with pathogenic variants in CDKL5 without seizures are exceedingly rare, and in-depth analyses of their variants have been lacking. Whole-genome sequencing was performed on a 29-year-old female with mild intellectual disability who, in the absence of overt seizures, presented with multiple episodes of altered mental status over a 24-year period. Clinical history was supplemented by a parent completed questionnaire from the International CDKL5 Disorder Database. We identified a de novo heterozygous variant in CDKL5 (NM_003159.2:c.645T>A;p.Ser215Arg). In-depth computational analysis performed to predict the impact of the variant on protein structure and function demonstrated that the variant was likely pathogenic. In this light, cell-based studies showed that the S215R substitution causes a marked reduction in CDKL5 kinase activity. Similarities between our case and one previously reported case are striking. These cases, both without seizures but with apparent behavioral symptomatology, together question whether seizures are mandatory in this neurodevelopmental disorder.


Assuntos
Síndromes Epilépticas/genética , Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Espasmos Infantis/genética , Adulto , Síndromes Epilépticas/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/fisiopatologia , Mutação , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Convulsões/fisiopatologia , Espasmos Infantis/fisiopatologia , Sequenciamento Completo do Genoma
8.
Genes Dev ; 33(19-20): 1293-1294, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575675

RESUMO

Homologous recombination (HR) is an important route for repairing DNA double-strand breaks (DSBs). The early stages of HR are well understood, but later stages remain mysterious. In this issue of Genes & Development, Hustedt and colleagues (pp. 1397-1415) reveal HROB as a new player in HR required for recruitment of the MCM8-9 complex, which is paralogous to the MCM2-7 replicative helicase. HROB functions closely with MCM8-9 to promote postsynaptic DNA repair synthesis. This study sheds valuable light on late events in HR and suggests that HROB may load MCM8-9 onto HR intermediates to facilitate the DNA unwinding required for DNA repair synthesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Reparo do DNA , Replicação do DNA , Proteínas de Manutenção de Minicromossomo
10.
EMBO J ; 37(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30266825

RESUMO

Mutations in the gene encoding the protein kinase CDKL5 cause a debilitating neurodevelopmental disease termed CDKL5 disorder. The impact of these mutations on CDKL5 function is poorly understood because the substrates and cellular processes controlled by CDKL5 are unclear. Here, we describe a quantitative phosphoproteomic screening which identified MAP1S, CEP131 and DLG5-regulators of microtubule and centrosome function-as cellular substrates of CDKL5. Antibodies against MAP1S phospho-Ser900 and CEP131 phospho-Ser35 confirmed CDKL5-dependent phosphorylation of these targets in human cells. The phospho-acceptor serine residues in MAP1S, CEP131 and DLG5 lie in the motif RPXSA, although CDKL5 can tolerate residues other than Ala immediately C-terminal to the phospho-acceptor serine. We provide insight into the control of CDKL5 activity and show that pathogenic mutations in CDKL5 cause a major reduction in CDKL5 activity in vitro and in cells. These data reveal the first cellular substrates of CDKL5, which may represent important biomarkers in the diagnosis and treatment of CDKL5 disorder, and illuminate the functions of this poorly characterized kinase.


Assuntos
Síndromes Epilépticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espasmos Infantis/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Proteínas do Citoesqueleto , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas dos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteômica , Espasmos Infantis/genética , Espasmos Infantis/patologia , Proteínas Supressoras de Tumor/genética
13.
Mol Cell ; 66(5): 610-621.e4, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575657

RESUMO

Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health.


Assuntos
Dano ao DNA , Anemia de Fanconi/enzimologia , Reparo de DNA por Recombinação , Origem de Replicação , Proteína de Replicação A/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Anemia de Fanconi/genética , Células HeLa , Humanos , Mutação , Ligação Proteica , Interferência de RNA , Proteína de Replicação A/genética , Transfecção , Ubiquitina-Proteína Ligases/genética
14.
Eur J Gen Pract ; 22(4): 267-273, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27848254

RESUMO

BACKGROUND: The incidence of melanoma is rising worldwide. Current Irish guidelines from the National Cancer Control Programme state suspicious pigmented lesions should not be removed in primary care. There are conflicting guidelines and research advising who should remove possible melanomas. OBJECTIVES: To determine whether initial diagnostic excision biopsy of cutaneous malignant melanoma in primary versus secondary care leads to poorer survival. METHODS: Analysis of data comprising 7116 cases of cutaneous malignant melanoma from the National Cancer Registry Ireland between January 2002 and December 2011. Single predictor variables were examined by the chi-square or Mann-Whitney U test. The effects of single predictor variables on survival were examined by Cox proportionate hazards modelling and a multivariate Cox model of survival based on excision in a non-hospital setting versus hospital setting was derived with adjusted and unadjusted hazard ratios. RESULTS: Over a 10-year period 8.5% of melanomas in Ireland were removed in a non-hospital setting. When comparing melanoma death between the hospital and non-hospital groups, the adjusted hazard ratio was 1.56 (95%CI: 1.08-2.26); (P = .02), indicating a non-inferior outcome for the melanoma cases initially treated in the non-hospital group, after adjustment for significant covariates. CONCLUSION: This study suggests that initial excision biopsy carried out in general practice does not lead to a poorer outcome. [Box: see text].


Assuntos
Melanoma/cirurgia , Atenção Primária à Saúde/métodos , Atenção Secundária à Saúde/métodos , Neoplasias Cutâneas/cirurgia , Adulto , Idoso , Biópsia/métodos , Feminino , Medicina Geral/métodos , Humanos , Irlanda , Masculino , Melanoma/diagnóstico , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Sistema de Registros , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Taxa de Sobrevida
16.
Genes Dev ; 30(6): 639-44, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980188

RESUMO

The Fan1 endonuclease is required for repair of DNA interstrand cross-links (ICLs). Mutations in human Fan1 cause karyomegalic interstitial nephritis (KIN), but it is unclear whether defective ICL repair is responsible or whether Fan1 nuclease activity is relevant. We show that Fan1 nuclease-defective (Fan1(nd/nd)) mice develop a mild form of KIN. The karyomegalic nuclei from Fan1(nd/nd) kidneys are polyploid, and fibroblasts from Fan1(nd/nd) mice become polyploid upon ICL induction, suggesting that defective ICL repair causes karyomegaly. Thus, Fan1 nuclease activity promotes ICL repair in a manner that controls ploidy, a role that we show is not shared by the Fanconi anemia pathway or the Slx4-Slx1 nuclease also involved in ICL repair.


Assuntos
Dano ao DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Nefrite Intersticial/enzimologia , Nefrite Intersticial/genética , Poliploidia , Animais , Células Cultivadas , Reparo do DNA/genética , Desoxirribonucleases/metabolismo , Exodesoxirribonucleases , Técnicas de Introdução de Genes , Rim/patologia , Camundongos , Enzimas Multifuncionais , Nefrite Intersticial/fisiopatologia
17.
Science ; 351(6275): 846-9, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797144

RESUMO

Mono-ubiquitination of Fancd2 is essential for repairing DNA interstrand cross-links (ICLs), but the underlying mechanisms are unclear. The Fan1 nuclease, also required for ICL repair, is recruited to ICLs by ubiquitinated (Ub) Fancd2. This could in principle explain how Ub-Fancd2 promotes ICL repair, but we show that recruitment of Fan1 by Ub-Fancd2 is dispensable for ICL repair. Instead, Fan1 recruitment--and activity--restrains DNA replication fork progression and prevents chromosome abnormalities from occurring when DNA replication forks stall, even in the absence of ICLs. Accordingly, Fan1 nuclease-defective knockin mice are cancer-prone. Moreover, we show that a Fan1 variant in high-risk pancreatic cancers abolishes recruitment by Ub-Fancd2 and causes genetic instability without affecting ICL repair. Therefore, Fan1 recruitment enables processing of stalled forks that is essential for genome stability and health.


Assuntos
Aberrações Cromossômicas , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Instabilidade Genômica/genética , Neoplasias Pancreáticas/genética , Ubiquitinação , Sequência de Aminoácidos , Animais , Reparo do DNA , Endodesoxirribonucleases/genética , Exodesoxirribonucleases , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Feminino , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Enzimas Multifuncionais
18.
HPB (Oxford) ; 17(10): 927-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258662

RESUMO

OBJECTIVES: To assess and compare the accuracy and inter-observer agreement for the detection of liver lesions using Primovist magnetic resonance imaging (pMRI) and computed tomography during arterial portography (CTAP). METHODS: Patients evaluated at St George Hospital Liver Unit for colorectal liver metastases (CRCLM) underwent CTAP as part of standard staging. pMRI was added to the pre-operative assessment. Two radiologists reported CTAP and two reported pMRI. The sensitivity and specificity of CTAP and pMRI were calculated using histopathology as the gold standard. RESULTS: Complete data were available for 62 patients corresponding to 219 lesions confirmed on histopathology. Agreement on the detection of lesions between the two radiologists that reported pMRI was higher than for CTAP (Kappa = 0.80 versus 0.74). Specificity of lesion detection for pMRI was 0.88 and 0.83 for CTAP (P = 0.112). Sensitivity for pMRI was 0.83 and 0.81 for CTAP. For patients who had chemotherapy before evaluation, pMRI had a significantly higher specificity than CTAP (0.79 versus 0.63, P = 0.011). CONCLUSIONS: pMRI is less invasive, has a good inter-observer agreement, has comparable sensitivity and specificity to CTAP in the pre-chemotherapy population and demonstrates better specificity in patients assessed post-chemotherapy. pMRI is a valid alternative to CTAP in the assessment of CRCLM.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/diagnóstico , Imageamento por Ressonância Magnética/métodos , Portografia/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/terapia , Terapia Combinada , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
EMBO J ; 34(3): 326-43, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25538220

RESUMO

Reversible protein ubiquitylation plays important roles in various processes including DNA repair. Here, we identify the deubiquitylase USP45 as a critical DNA repair regulator. USP45 associates with ERCC1, a subunit of the DNA repair endonuclease XPF-ERCC1, via a short acidic motif outside of the USP45 catalytic domain. Wild-type USP45, but not a USP45 mutant defective in ERCC1 binding, efficiently deubiquitylates ERCC1 in vitro, and the levels of ubiquitylated ERCC1 are markedly enhanced in USP45 knockout cells. Cells lacking USP45 are hypersensitive specifically to UV irradiation and DNA interstrand cross-links, similar to cells lacking ERCC1. Furthermore, the repair of UV-induced DNA damage is markedly reduced in USP45-deficient cells. ERCC1 translocation to DNA damage-induced subnuclear foci is markedly impaired in USP45 knockout cells, possibly accounting for defective DNA repair. Finally, USP45 localises to sites of DNA damage in a manner dependent on its deubiquitylase activity, but independent of its ability to bind ERCC1-XPF. Together, these results establish USP45 as a new regulator of XPF-ERCC1 crucial for efficient DNA repair.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endopeptidases/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/efeitos da radiação , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endopeptidases/genética , Humanos , Camundongos , Camundongos Knockout , Raios Ultravioleta/efeitos adversos
20.
PLoS One ; 9(10): e109752, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303670

RESUMO

The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Marcação de Genes/métodos , Genoma , RNA Guia de Cinetoplastídeos/genética , Proteínas Associadas a CRISPR/genética , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...